Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biomedicines ; 11(4)2023 Mar 28.
Article in English | MEDLINE | ID: covidwho-2297603

ABSTRACT

Patients with antibody deficiency disorders, such as primary immunodeficiency (PID) or secondary immunodeficiency (SID) to B-cell lymphoproliferative disorder (B-CLPD), are two groups vulnerable to developing the severe or chronic form of coronavirus disease caused by SARS-CoV-2 (COVID-19). The data on adaptive immune responses against SARS-CoV-2 are well described in healthy donors, but still limited in patients with antibody deficiency of a different cause. Herein, we analyzed spike-specific IFN-γ and anti-spike IgG antibody responses at 3 to 6 months after exposure to SARS-CoV-2 derived from vaccination and/or infection in two cohorts of immunodeficient patients (PID vs. SID) compared to healthy controls (HCs). Pre-vaccine anti-SARS-CoV-2 cellular responses before vaccine administration were measured in 10 PID patients. Baseline cellular responses were detectable in 4 out of 10 PID patients who had COVID-19 prior to vaccination, perceiving an increase in cellular responses after two-dose vaccination (p < 0.001). Adequate specific cellular responses were observed in 18 out of 20 (90%) PID patients, in 14 out of 20 (70%) SID patients and in 74 out of 81 (96%) HCs after vaccination (and natural infection in some cases). Specific IFN-γ response was significantly higher in HC with respect to PID (1908.5 mUI/mL vs. 1694.1 mUI/mL; p = 0.005). Whereas all SID and HC patients mounted a specific humoral immune response, only 80% of PID patients showed positive anti-SARS-CoV-2 IgG. The titer of anti-SARS-CoV-2 IgG was significantly lower in SID compared with HC patients (p = 0.040), without significant differences between PID and HC patients (p = 0.123) and between PID and SID patients (p =0.683). High proportions of PID and SID patients showed adequate specific cellular responses to receptor binding domain (RBD) neoantigen, with a divergence between the two arms of the adaptive immune response in PID and SID patients. We also focused on the correlation of protection of positive SARS-CoV-2 cellular response to omicron exposure: 27 out of 81 (33.3%) HCs referred COVID-19 detected by PCR or antigen test, 24 with a mild course, 1 with moderate symptoms and the remaining 2 with bilateral pneumonia that were treated in an outpatient basis. Our results might support the relevance of these immunological studies to determine the correlation of protection with severe disease and for deciding the need for additional boosters on a personalized basis. Follow-up studies are required to evaluate the duration and variability in the immune response to COVID-19 vaccination or infection.

2.
J Innate Immun ; 14(3): 243-256, 2022.
Article in English | MEDLINE | ID: covidwho-1476900

ABSTRACT

During inflammatory responses, monocytes are recruited into inflamed tissues, where they become monocyte-derived macrophages and acquire pro-inflammatory and tissue-damaging effects in response to the surrounding environment. In fact, monocyte-derived macrophage subsets are major pathogenic cells in inflammatory pathologies. Strikingly, the transcriptome of pathogenic monocyte-derived macrophage subsets resembles the gene profile of macrophage colony-stimulating factor (M-CSF)-primed monocyte-derived human macrophages (M-MØ). As M-MØ display a characteristic cytokine profile after activation (IL10high TNFlow IL23low IL6low), we sought to determine the transcriptional signature of M-MØ upon exposure to pathogenic stimuli. Activation of M-MØ led to the acquisition of a distinctive transcriptional profile characterized by the induction of a group of genes (Gene set 1) highly expressed by pathogenic monocyte-derived macrophages in COVID-19 and whose presence in tumor-associated macrophages (TAM) correlates with the expression of macrophage-specific markers (CD163, SPI1) and IL10. Indeed, Gene set 1 expression was primarily dependent on ERK/p38 and STAT3 activation, and transcriptional analysis and neutralization experiments revealed that IL-10 is not only required for the expression of a subset of genes within Gene set 1 but also significantly contributes to the idiosyncratic gene signature of activated M-MØ. Our results indicate that activation of M-CSF-dependent monocyte-derived macrophages induces a distinctive gene expression profile, which is partially dependent on IL-10, and identifies a gene set potentially helpful for macrophage-centered therapeutic strategies.


Subject(s)
COVID-19 , Macrophage Colony-Stimulating Factor , Cell Differentiation , Cells, Cultured , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Interleukin-10/genetics , Interleukin-10/metabolism , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/metabolism , Monocytes/metabolism
3.
Front Immunol ; 11: 603507, 2020.
Article in English | MEDLINE | ID: covidwho-963098

ABSTRACT

Defective IFN production and exacerbated inflammatory and pro-fibrotic responses are hallmarks of SARS-CoV-2 infection in severe COVID-19. Based on these hallmarks, and considering the pivotal role of macrophages in COVID-19 pathogenesis, we hypothesize that the transcription factors MAFB and MAF critically contribute to COVID-19 progression by shaping the response of macrophages to SARS-CoV-2. Our proposal stems from the recent identification of pathogenic lung macrophage subsets in severe COVID-19, and takes into consideration the previously reported ability of MAFB to dampen IFN type I production, as well as the critical role of MAFB and MAF in the acquisition and maintenance of the transcriptional signature of M-CSF-conditioned human macrophages. Solid evidences are presented that link overexpression of MAFB and silencing of MAF expression with clinical and biological features of severe COVID-19. As a whole, we propose that a high MAFB/MAF expression ratio in lung macrophages could serve as an accurate diagnostic tool for COVID-19 progression. Indeed, reversing the macrophage MAFB/MAF expression ratio might impair the exacerbated inflammatory and profibrotic responses, and restore the defective IFN type I production, thus becoming a potential strategy to limit severity of COVID-19.


Subject(s)
COVID-19/immunology , Macrophages/immunology , Maf Transcription Factors/immunology , MafB Transcription Factor/immunology , SARS-CoV-2/immunology , COVID-19/genetics , COVID-19/virology , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Macrophages/metabolism , Maf Transcription Factors/genetics , Maf Transcription Factors/metabolism , MafB Transcription Factor/genetics , MafB Transcription Factor/metabolism , SARS-CoV-2/physiology , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL